by Xu-Jun Dong^a)^b), Xiang-Dong Zhu^a), Yi-Feng Wang^a), Qiong Wang^a), Peng Ju^a), and Shide Luo^{*a})

^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86 871-522-3097; e-mail: shideluo@hotmail.com)

^b) Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China

Three new secoprezizaane sesquiterpene lactones, (1R,2S)-1,2-epoxyneomajucin (1), (2R)-2hydroxyneomajucin (2), and (2R)-2-hydroxymajucin (3), along with six known compounds (4–9), were isolated from the poisonous shrub *Illicium micranthum*. Their structures were established by in-depth analyses of spectroscopic and mass-spectrometric data.

Introduction. – The plants of the genus *Illicium* are mainly distributed in East Asia and in the southeast of North America. In southern China, there are more than 25 widely distributed *Illicium* species known [1]. Previous phytochemical investigations of this genus has led to the isolation of many sesquiterpene lactones endowed with a unique secoprezizaane C-skeleton [2]. Some of them were shown to exhibit neurotoxic [3] or neurotrophic [4] activities.

Illicium micranthum, a poisonous shrub used as a traditional pesticide [1], has not been investigated so far in terms of chemical constituents. Herein, we describe the isolation and structure elucidation of three new sesquiterpene lactones (1-3) from *I.* micranthum, which were obtained together with the known sesquiterpene lactones pseudomajucin (4) [5], neomajucin (5) [6], majucin (6) [6], (2S)-2-hydroxyneomajucin (7) [6], 3,4-dehydro-2-oxoneomajucin (8) [6], and 2-oxoneomajucin (9) [6].

Results and Discussion. – Compound **1** was assigned the molecular formula $C_{15}H_{18}O_8$, as determined by HR-ESI-MS (m/z 349.0902 ($[M+Na]^+$; calc. 349.0899)), corresponding to seven degrees of unsaturation. Its IR spectrum displayed absorptions due to OH groups (3514, 3445, 3279), a γ -lactone (1793), and a δ -lactone (1737 cm⁻¹). The ¹³C-NMR spectrum of **1** exhibited 15 signals, including two characteristic lactone C=O resonances at $\delta(C)$ 176.8 and 173.1. Detailed comparison of the ¹H- and ¹³C-NMR data of **1** (*Tables 1* and 2, resp.) with those of neomajucin (**5**) [6] indicated a close structural analogy, except for C(1) and C(2). Compared to **5**, the NMR spectrum of **1** suggested an *oxygenated* methine (H–C(1)) and an *oxygenated* quaternary C-atom (C(1)) instead of a non-oxygenated CH and a CH₂ group, respectively. Moreover, the molecular formula of **1** exhibited one degree of unsaturation more than that of neomajucin (**5**). From this evidence, an additional epoxide ring [7] between C(1) and C(2) was inferred in the case of **1**.

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

Table 1. ¹*H*-*NMR Data of* **1**–**3**. At 400 MHz in C_5D_5N ; δ in ppm, *J* in Hz.

Atom ¹)	1	2	3	
$H_a - C(1)$	_	3.11-3.15 (<i>m</i>)	3.06–3.11 (<i>m</i>)	
$H_a - C(2)$	_	4.70-4.81 (m)	_	
$H_{\beta}-C(2)$	3.83 (s)	_	4.57(t, J=7.5)	
$H_a - C(3)$	2.04(d, J=13.6)	2.74 (dd, J = 13.6, 7.8)	4.91 (d, J = 7.9)	
$H_{\beta}-C(3)$	2.34 (d, J = 13.6)	2.14 (dd, J = 13.6, 4.4)	_	
$H_a - C(7)$	5.11 (s)	5.12(d, J=2.4)	5.09–5.15 (<i>m</i>)	
$H_a - C(8)$	3.21 (d, J = 4.0)	2.07 (dd, J = 14.3, 2.8)	3.17 (d, J = 14.0)	
$H_{\beta}-C(8)$	2.22 (dd, J = 14.0, 2.4)	3.05 (dd, J = 14.3, 2.1)	2.09 (dd, J = 14.0, 2.9)	
$H_a - C(10)$	4.92(d, J=4.4)	4.67 (d, J=3.1)	4.63 (d, J = 4.6)	
Me(13)	1.55(s)	1.66(s)	1.71(s)	
$H_a - C(14)$	4.07 (d, J = 11.0)	4.18(d, J=11.0)	4.34 (d, J = 11.0)	
$H_{\beta}-C(14)$	5.00 (d, J = 11.0)	4.94 (d, J = 11.0)	5.07 (d, J = 11.0)	
Me(15)	1.58(s)	1.99(d, J=7.4)	1.33 (d, J = 7.0)	
10-OH	9.33 (br. <i>d</i> , <i>J</i> =4.4)	9.60 (br. $d, J=3.1$))	9.13 (br. <i>d</i> , <i>J</i> =4.6)	

The proposed structure of **1** was corroborated by HMBC correlations between Me(15) and C(1) and C(2), and between CH₂(3) and C(1) and C(2) (*Fig. 1*). In a ROESY experiment (*Fig. 2*), Me(15) showed a cross-peak with H_{β} -C(2), which indicated that the epoxide ring was α -oriented. From these data, the structure of compound **1** was assigned as (1*R*,2*S*)-1,2-epoxyneomajucin¹).

Compound **2** was assigned the molecular formula $C_{15}H_{20}O_8$ as educed from its HR-ESI-MS data (m/z 351.1050 ($[M+Na]^+$; calc. 351.1055). Its IR spectrum showed the presence of OH groups (3581, 3537, 3477, 3320), a γ -lactone ring (1779), and a δ -lactone ring (1733 cm⁻¹). The NMR data of **2** (*Tables 1* and 2) also indicated a secoprezizaane skeleton [6]. The only difference between **2** and neomajucin (**5**) was that a CH₂ signal in the latter was replaced by an oxygenated CH in **2**.

¹⁾ Arbitrary C-atom numbering. For systematic names, see the Exper. Part.

Fig. 1. Key HMBC correlations for compounds 1 and 2

Fig. 2. Selected REOSY correlations for compounds 1 and 2^{1})

Position ¹)	1	2	3	5	6
1	66.8	43.2	48.2	39.4	38.0
2	64.2	72.2	76.8	31.4	42.9
3	34.9	43.3	71.7	31.6	72.7
4	80.5	81.8	82.5	84.1	82.8
5	47.4	47.2	47.4	47.5	47.5
6	80.0	79.9	79.9	79.6	79.9
7	80.8	80.5	80.6	80.5	80.6
8	24.3	27.5	26.9	27.5	27.1
9	52.3	51.3	49.2	51.0	51.5
10	70.6	70.1	69.7	70.7	70.3
11	173.1	173.8	174.8	174.8	174.7
12	176.8	177.7	178.0	177.2	177.6
13	21.8	12.5	21.1	21.4	20.9
14	71.8	72.4	72.5	72.6	72.4
15	14.2	9.0	12.7	14.3	14.1

Table 2. ¹³C-NMR Data of 1-3. At 100 MHz in C₅D₅N; δ in ppm.

In the HMBC spectrum of **2** (*Fig. 1*), $H_a-C(2)$ (δ (H) 4.70–4.81) exhibited correlations with C(4), C(9), and C(15) at δ (C) 81.8, 51.3, and 9.0, respectively, indicating a 2-OH group. The signal at δ (H) 4.70–4.81, as well as the ¹H,¹H-COSY correlations of Me(15)/H_a–C(1)/H_a–C(2)/CH₂(3), further confirmed the above deduction. Compared

to the known (2*S*)-2-hydroxyneomajucin (**7**), compound **2** demonstrated an upfield ¹H-NMR chemical shift for Me(15) due to the γ -gauche effect (*Fig. 3*) [8]; this, in turn, implied the presence of a 2 β -OH group. In a ROESY experiment (*Fig. 2*), H_a-C(1) at δ (H) 3.11-3.15 showed a correlation with H_a-C(2) at δ (H) 4.70-4.81, which also supported the β -orientation of the OH-group at C(2). Thus, the structure of **2** was identified as (2*R*)-2-hydroxyneomajucin.

Fig. 3. Gauche effect for compound **2** and its epimer **7** illustrated by Newman projections along C(2)-C(1)

The molecular formula of compound **3** was established as $C_{15}H_{20}O_9$, based on the analysis of EI-MS and ¹³C-NMR data, and confirmed by HR-ESI-MS (m/z 367.1013 ($[M+Na]^+$; calc. 367.1005)). The IR spectrum of **3** showed absorption bands for OH groups (3552, 3509, 3451, 3209), a γ -lactone (1783), and a δ -lactone (1731 cm⁻¹). The ¹H- and ¹³C-NMR spectra of **3** (*Tables 1* and 2, resp.) also indicated a secoprezizaane sesquiterpene [6]. Two characteristic lactone C=O signals at δ (C) 178.0 and 174.8 were observed in the ¹³C-NMR spectrum. In addition, the ¹H- and ¹³C-NMR data of **3** revealed great similarities with those of majucin (**6**), except for one more OH group at C(2) in **3**, which was supported by HMBC correlations between H_β-C(2) at δ (H) 4.57 and C(4), C(9), and C(15), respectively. The configuration of the 2-OH group was determined as α , based on the ROESY spectrum, which showed an interaction between Me(15) and H_β-C(2). Therefore, the structure of **3** was determined as (2*R*)-2-hydroxymajucin.

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh) and silica gel H (60 µm) were obtained from Qingdao Haiyang Chemical Co., China. TLC: Precoated silica-gel GF_{254} plates (Qingdao Haiyang Chemical Co); detection at 254 nm, and by spraying with 5% H₂SO₄ in EtOH soln., followed by heating. Optical rotations: Horiba SEAP-300 spectropolarimeter. IR Spectra: Bio-Rad-FtS-135 spectrometer; KBr pellets; in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker AM-400 and DXR-500 spectrometers; δ in ppm, J in Hz. MS: VG Autospec-3000 mass spectrometer (70 eV for EI); in m/z (rel. %).

Plant Material. The twigs and leaves of *Illicium micranthum* were collected from Wenshan county, Yunnan province, P. R. China, in September 2003. The plant material was authenticated by Prof. *Xi-Wen Li*, and a voucher specimen (No. KIB D03-10-01) was deposited at the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Sciences, P. R. China.

Extraction and Isolation. Dried, powdered *I. micranthum* (3.5 kg) was extracted with EtOH/H₂O 7:3 at r.t. The resulting extract (644 g) was suspended in H₂O, and extracted first with petroleum ether and then AcOEt. The AcOEt extract (98 g) was subjected to CC (SiO₂; AcOEt/Me₂CO 1:0 \rightarrow 0:1) to afford fractions *Fr.* 1–4. *Fr.* 1 (30.1 g) was re-subjected to repeated CC (SiO₂; CHCl₃/Me₂CO 20:1 and 10:1,

then CHCl₃/MeOH 50:1 and 20:1) to afford **4** (610 mg), **5** (2.7 g), **6** (7.83 g), **8** (90 mg), and **9** (6 mg). *Fr.* 2 (20.6 g) was purified by CC (SiO₂; CHCl₃/MeOH 15:1 \rightarrow 9:1) to yield **6** (5.2 g), **7** (790 mg), **3** (18 mg), **2** (35 mg), and **1** (29 mg).

(1R,2S)-1,2-Epoxyneomajucin (=(1S,2R,4S,6S,7S,11R,12R,15R)-6,11,15-Trihydroxy-2,7-dimethyl-3, 9,13-trioxapentacyclo[10.3.1.0^{1.6},0^{2.4}.0^{7.11}]hexadecane-10,14-dione; **1**). Colorless, amorphous solid. [a]_D^{24.3} = -123.6 (c = 0.557, C_3H_5N). IR (KBr): 3514, 3445, 3279, 1793, 1737. ¹H- and ¹³C-NMR: see Tables 1 and 2, resp. EI-MS: 326 (M^+), 308 (10), 251 (26), 175 (28), 161 (46), 115 (82), 95 (47), 69 (100). HR-ESI-MS: 349.0902 ([M+Na]⁺, $C_{15}H_{18}NaO_8^+$; calc.349.0899).

(2R)-2-Hydroxyneomajucin (=(15,25,3R,5R,6S,10R,11R,14R)-3,5,10,14-Tetrahydroxy-2,6-dimethyl-8,12-dioxatetracyclo[9.3.1.0^{1,5}.0^{6,10}]pentadecane-9,13-dione; **2**). Colorless, amorphous solid. $[\alpha]_{\rm D}^{24.1} = -68.6 \ (c = 1.102, C_5H_5N)$. IR (KBr): 3581, 3537, 3477, 3320, 1779, 1733. ¹H- and ¹³C-NMR: see Tables 1 and 2, resp. EI-MS: 328 (*M*⁺), 310 (10), 292 (17), 235 (75), 191 (37), 161 (50), 125 (74), 115 (62), 69 (100), 55 (66). HR-ESI-MS: 351.1050 ([M+Na]⁺, C_{15}H_{20}NaO_8^+; calc. 351.1055).

 $\begin{array}{ll} (2R)-2-Hydroxymajucin & (=(1S,2S,3R,4R,5R,6S,10R,11R,14R)-3,4,5,10,14-Pentahydroxy-2,6-di$ methyl-8,12-dioxatetracyclo[9.3.1.0^{1,5}.0^{6,10}]pentadecane-9,13-dione;**3**). Colorless, amorphous solid. $<math display="block">[\alpha]_{D}^{25} = -123.4 \ (c = 1.26, \ C_3H_5N). \ IR \ (KBr): 3552, 3509, 3451, 3209, 1783, 1731. \ ^{1}H- \ and \ ^{13}C-NMR: see Tables 1 \ and 2, resp. EI-MS: 344 \ (M^+), 326 \ (3), 308 \ (72), 69 \ (24), 251 \ (100), 71 \ (70), 69 \ (84), 55 \ (43). \\ HR-ESI-MS: 367.1013 \ ([M+Na]^+, \ C_{15}H_{20}NaO_{6}^+; \ calc. 367.1005). \end{array}$

REFERENCES

- Institute Botanicum Kummingense Academiae Sinicae Edita, 'Flora Yunnancia', Science Press, Beijing, 2000, Tomus 11.
- [2] J.-M. Huang, C.-S. Yang, M. Kondo K. Nakade, H. Takahashi, S. Takaoka, Y. Fukuyama, *Tetrahedron* 2002, 58, 6937; R. Yokoyama, J.-M. Huang, A. Hosoda, K. Kino, C.-S.Yang, Y. Fukuyama, *J. Nat. Prod.* 2003, 66, 799; T. J. Schmidt, W. Peters, *J. Nat. Prod.* 1997, 60, 783.
- [3] T. Nakamura, E. Okuyama, M. Yamazaki, Chem. Pharm. Bull. 1996, 44, 1908.
- [4] J.-M. Huang, R. Yokoyama, C.-S. Yang, Y. Fukuyama, Tetrahedron Lett. 2004, 41, 6111.
- [5] I. Kouno, N. Baba, M. Hashimoto, N. Kawano, C.-S. Yang, S. Sato, Chem. Pharm. Bull. 1989, 37, 2427.
- [6] I. Kouno, N. Baba, M. Hashimoto, N. Kawano, M. Takahashi, H. Kaneto, C.-S. Yang, Chem. Pharm. Bull. 1990, 38, 422.
- [7] Y.-H. Shen, S.-H. Li, R.-T. Li, Q.-B. Han, Q.-S. Zhao, L. Liang, H.-D. Sun, Y. Lu, P. Cao, Q.-T. Zheng, Org. Lett. 2004, 6, 1539.
- [8] H. Zhang, J.-M. Yue, Helv. Chim. Acta 2005, 88, 2537.

Received January 16, 2006